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ABSTRACT
~ The transverse properties of an aluminum alloy metal matrix composite reinforced by
continuous alumina fibers have been investigated. The composite is subjected to both
mechanical and cyclic thermal loading. The results of an experimental program indicate that
the shakedown concept of structural mechanics provides a means of describing the material
behavior. When the loading conditions are within the shakedown region the material
finally responds in an elastic manner after initial plastic response and for loading conditions
outside the shakedown region the material exhibits a rapid incremental plastic strain

accumulation.
The failure strain varies by an order of magnitude according to the operating
conditions. Hence for high mechanical and low thermal loading the failure strain is small,

for low mechanical and high thermal loading the failure strain is large.



1. INTRODUCTION 7 _ ‘

The potential for weight and strength advantages of components made of metal matrix
composites is the consequence of the anisotropic properties of the composite. That
advantage is diminished, or is even lost, for laminates with a less marked anisotropy.
Consequently if full advantage is to be taken of the dominant strength characteristics then
the fibers should be oriented in the direction of maximum stress transmission. In this
circumstance the transverse properties of the composite are critical since there must be
sufficient strength in the matrix to carry the secondary stresses applied in the transverse
direction. |

The transversé properties of a metal matrix rcompo‘sitc consisting of an aluminum
lithium alloy matrix reinforced with continuous alumina fibers are investigated in this
study. An important characteristic of this material is the combination of a strong bond at
;hg fiber-matrix interface and a ductile matrix. There is also a large mismatch in the
coefficient of thermal expansion of the fiber and maitrix so that fluctuations in operating
temperature induce thermal stresses in the composite. It is the goal of this study to
determine the behavior of the composite when subjected to mechanical and thermal loading
with special attention given to the transverse properties. The properties in the fiber direction
are the subject of another study. As a result of this study it is possible to uescribe the
behavior of the composite in terms of the shakedown concept used in structural mechanics,
and it is also possible to develop a rather simple method for establishing the constitutive

equations for use in structural calculations.

2.  EXPERIMENTAL PROGRAM

The composite studied is Du Pont's FP/Al [Champion et. al., 1978], with continuous
fibers in a unidirectional lay-up. The fiber volume fraction was determined to be 55%.
The FP fiber consists of 99% polycrystalline a-alumina (Alp03) coated with silica that
improves the strength of the fiber and aids the wetting by the molten metal. The fibers have

a diameter of approximately 20 pm, a modulus of 345 to 380 GPa, a tensile strength of 1.9



to 2.1 GPa for 6.4 mm gauge length, and a fracture strain of 0.3-0.4%. The matrix
material is a 2 wt% Li-Al binary alloy. The lithium promotes the wetting of the alumina
fibers that forms a strong matrix-fiber interface and it also raises the modulus and decreases
the density of the aluminum. The composite is fabricated by preparing the FP fibers into
tapes by using a fugitive binder and the tapes are subsequently laid up in a metal mold in
the desired orientation. The binder is burned away and the mold is vacuum-infiltrated with
the molten matrix. The composite was available in the form of a plate 150 x 150 x 12.5
mm thick.

The specimen used in the test is shown in Fig. 1a. It has a relatively large radius at
the transition from the gripping section to the reduced gauge section to provide a low stress
concentration and a short gauge length for efficient use of the material. The specimen was
loaded in a servo hydraulic machine and it was heated by means of induction coils (Fig. 1b)
and the strain was measured with an extensometer with 3/8" gauge length. The temperature
was measured by using three type K thermocouples mounted at the center and at the ends
of the gauge section. The center thermocouple controlled the temperature while the top and
bottorn thermocouples were used to measure the variation of temperature along the length
of the specimen. The variation of temperature with time and space is shown in Fig. 2. The
spacial temperature distribution is slightly different for the heating and cooling parts of the
cycle. It was not possible to adjust the coil to have a uniform temperature distribution over
the whole cycle. It was therefore adjusted to have a minimal spacial variation for both parts
of the cycle. A computer was used to control the tests by generating command signals for
load and temperature and to perform data acquisition.

The tests reported in this study involved a constant transverse stress in combination
with cyéles of temperature with cycle time 150 s. Because of the limited évailability of the
composite only one specimen was used for each transverse stress level. The specimen was
loaded and subjected to cyclic temperature and the ratcheting rate was measured when the
steady state condition was reached. The cyclic temperature range was then increased and
the next rate was measured on reaching the next steady state condition. The temperature

and strain variations were continuously recorded and typical examples of readings are



shown in Figs. 3,4 and 5. The strain measured over a cycle of temperature is shown in
Fig. 3, which indicates a small amount of hysteresis which it is due to the small spatial
time-dependent nonuniformity of the temperature field in the specimen. The accumulation
of strain in the direction of the applied stress are shown for low transverse stress in Fig. 4,

and for a high stress in Fig. 5.

3. EXPERIMENTAL OBSERVATIONS

Transverse stress-strain curves at room temperature are shown in Fig. 6, from which
a deviation from linearity is observed to occur at 75 MPa. The ultimate strength is 200
MPa and the strain to fracture is 0.8%. The ultimate strength is about 50% higher than the
ultimate matrix strength while the failure strain of 0.8% is only 3% of the 30% failure strain
of the matrix [Sakui and Tamura, 1969].

Representative results for the constant transverse stress and cyclic temperature are
given in Figs. 4 and 5 which indicate the results for a low and high transverse stress
respectively. In both cases transient behavior is followed by a cyclic response for which
there is an increment of strain after each cycle, i.e., ratcheting occurs in both examples.
For the low transverse stress the transient portion is completed after one cycle (Fig. 4)
whereas in the case of the high load the transient behavior continues for forty cycles before
a steady state condition is reached (Fig. 5).

Similar tests were performed at different values of constant transverse stress and
temperature cycle. In Fig. 7, the steady state strain range A€ recorded over a cycle of
temperature is plotted as a function of the temperature range AT for different values of the
transverse stress . [t may be inferred from this plot that the cyclic strain is independent
of the level of the ransverse stress and is linearly dependent on the temperature range AT.

In Fig. 8 contours of constant values of dep/dN are plotted, where €p is the plastic
ratchet strain and N is the cycle number. There are combinations of T and AT for which
no ratcheting occurs and after an initial (transient) response the cyclic behavior material is
elastic. This condition is indicated in Fig. 8 as the shakedown condition. When the

operating conditions exceed the shakedown condition ratcheting occurs at rates indicated in




Fig. 8 and Fig. 9.
The contours of constant ratchet strain rate plotted in Fig. 8 are generally parallel to
the shakedown surface. This observation suggests that the force f which drives the ratchet

strain rate is given by

AT ©
B=[—+——T-— ] o))
TS 0-S

where T and Gy are the ordinates defining the shakedown condition. The relationship of

dep/dN has the form

de
—P-£@) (2)

dN
where f(B) has the form given in Fig. 10. The relaﬁonship is exponentially dependent on B

and can be written as
£(B) = exp(9.5 » 102B) -1

The failure strain is dependent on the operating condition as indicated in Fig. 11. The
failure strain was 0.8% for high stress and low thermal load whereas for low transverse
stress of 30 MPa the failure strain reaches 12%. Microscopic observations of specimens
subjected to low transverse loading and with large failure strains, Fig. 12a, showed
distributed damage in the form of small cracks over the whole gauge section. The cracks
are initiated from areas with poor matrix infiltration and locations with closely spaced
fibers. The macroscopic fracture surface is wavy. A higher magnification view Fig. 12b,
indicates a ductile fracture in the matrix with extremely oblong voids. It appears that the
initial fracture is close to the fiber matrix interface on planes perpendicular to the loading

direction and that the final fracture consists of a ductile fracture in the remaining matrix



ligaments between the fibers.

The fracture for high transverse loading and small failure strain, Fig. 13a, is localized
to one narrow band oriented approximately 45° to the loading direction. The fracture
surface, Fig. 13b, also indicates that the fracture is governed by a ductile matrix failure.
However, the fracture does not approach the fiber matrix interface as for the low transverse
loading and it appears as the whole load carrying capacity of the matrix has been lost at the
same time. These observations suggest that the failure mechanism in the matrix is

associated with void growth.

4. COMPUTATIONAL STUDIES

By using the theory of homogenization in conjunction with finite element procedures
an attempt is made to determine the mechanics that governs the behavior of the compoéite in
terms of the properties of the fiber and the matrix.

The present composite consists of long fibers in a unidirectional lay up that are
randomly distributed in the transverse plane. In the model to be analyzed the fibers are
assumed to be long parallel cylinders arranged in a hexagonal array, Fig. 14a. This
periodical array has the mechanical properties with the closest symmetries to a composite
with randomly distributed fibers. Both systems are transversely isotropic when the
constituents are linear elastic but the hexagonal array has a weak deviation from transverse
isotropy when the matrix exhibits a nonlinear stress strain relation [Jansson, 1990]. The
deviation is most pronounced for a perfectly-plastic matrix. However, reasonable results
can be expected if effective properties are calculated for loadings that do not permit slip
planes unconstrained by the fibers.

The governing boundary value problem for the effective properties of the unit cell is
two dimensional and has been solved with the Finite Element method by using ABACUS
[1988]. A 10 node biquadratic quadrilate generalized plane strain element with reduced
integration was used to avoid locking. The considered loading of the unit cell, Fig. 14a is

symmetric with respect to the y; and yp axis. This implies that only an eighth of the



indicated unit cell in Fig. 14a needs to be analyzed. The mesh shown in Fig. 14b is subject

to the following in-plane boundary conditions for the tractions Tj and displacements uj on

the boundary S:
T, —@b,2+c =-T. ﬁb,g—
2 2 w2 2
V3 b V3 b
—b,—+c|=-u |—b—-
W2 2 2 2

u2(y2 =0)= —Uz(y2 = b) = const. / J- Tzds - I Tzds =0
¥2=0 y2=b

V3
ul(yl-= 0) = ——z'b < El >

%)— | idS=-<0;>
¥2=0

where < G| > is the average stress and <g|> is the average strain in the 1- direction. The

generalized plane strain condition gives

gg=const. / [ T3dS=0
y3=0

A detailed description of the deviation of the boundary conditions for different loadings are
given in Jansson [1990].

The elastic properties of fiber and matrix are not greatly affected by the history of
processing and heat treatment of the composite so that it is possible to use data from the
literature. However, the flow properties of the Al-Li matrix alloy are strongly dependent
on histories of heat treatment and cold-working [Stark et al., 1981 and Sakui and Tamura,

1969]. Details of the processing of the composite and of any post heat treatments are not



available. Hence, the exact state of the matrix is not known and it is not possible to extract
the ﬂowr broperticé of the matrix from the literature. The only means of estimating the flow
properties of the matrix of the composite is to select matrix properties so that the calculated
response fits the experimental stress-strain curve for the composite. This procedure has
been performed by Jansson [1990] who demonstrated that the matrix properties obtained
from one stress state could be used to predict accurately stress-strain relationships for other
loading states. The initial yield stress of the matrix was determined to be 94 MPa with a
hardening exponent n = 5 (Fig. 6) for isotroptic hardening. The isotropic hardening cannot
describe the matrix behavior when it is subjected to cyclic loading conditions and nonlinear
kinematic hardening would be more appropriate. However, this option is not available in
ABAQUS and the tests required to determine the cyclic properties of the matrix have not
been performed for lack of material. The matrix was therefore modeled as an elastic
perfectly-plastic material. In the calculations the fibers are assumed to be linear elastic and
the matrix behavior is modelled with a small strain J) perfectly plastic theory using the
properties given in Table 1. It is therefore not expected that the calculations can be used to
provide accurate predictions but should be sufficiently reliable to provide insight into the
material behavior.

The calculated transverse stress strain curve, Fig. 6, for an elastic perfectly plastic
matrix agrees well with the experimental curve up to € = 0.1%. The calculated limit load is
much lower than the measured because the matrix hardening has not been included. It can
be noted that the increase in limit load is 30% for the perfectly plastic matrix. A substantial
portion of the increase comes from the plane strain condition for the matrix in the fiber
direction which is 2/+/3 and the remainder represents constraint. The calculated cyclic
thermal strain agree well with the measured values, Fig. 7.

The caléulaiéd fé:épbnse for constant stress and cyclic temperature, Figs. 15 and 16
exhibit the same features as the éxperiments, Figs. 4 and 5 with a short transition period for
low transverse stress and a long transition period for high transverse stress.

 In performing the elastic-plastic calculation it was possible to determine the

shakedown bbhndziry defined in Fig. 17. This has been expressed in terms of the



dimensionless loadings EAaAT/oy and o/0y. It was found for an experimentally
temperature dependent yield stress that the shakedown boundary is given by the result for a
temperature independent yield stress to a good approximation by replacing the yield stress
with the average yield stress for the temperature dependent case. The ratchet rates for
different loading conditions fall one master curve, Fig. 18, when plotted as a function of
Aeto/op, where Aet is the thermal strain increment outside the shakedown surface and
o/oL is the current transverse stress over the limit stress. |

It was observed earlier that the failure strain was found to be strongly dependent on
the transverse stress, Fig. 11. It is known that ductility is usually strongly dependent on
the void growth factor 6, / G for ductile fracture. The highest void growth factor in the
matrix is plotted in Fig. 19 versus accumulated transverse strain for different loadings. For
transverse tension it increases from 3 at the initial linear elastic response to 6 ét the
observed fracture strain. Heating causes a negative hydrostatic pressure in the matrix.
Transverse loading combined with thermal cycling causes a decrease in Ok / G during the
heating after the initial transverse loading. During the subsequent cooling, the magnitude
of Oy / G increases. The calculations indicate that the value of O/ o decreases initially
especially for low values of transverse stress. However, as strain is accumulated Ok /G
increases and reaches a steady state condition with an increase of oy /G for each cycle.

The computations indicate that the magnitude of the highest value in a cycle of
Sk’ o for a given accumulated transverse strain is strongly dependent on the magnitude
of the transverse stress, Fig. 20, with low transverse stress requiring more strain than high
transverse stress.

In Fig. 21 the equivalent plastic strain at the location with the highest value 6, / g is
plotted against the accumulated transverse strain for different loadings. From this figure it
can be deduced that the equivalent strain is linearly related to the transverse strain and is

relatively independent of the transverse loading.



5. ANALYSIS OF THE EXPERIMENTAL AND COMPUTATIONAL STUDIES

The experiments indicate that after transient response the material reaches a steady
state condition. If the operating point lies within the shakedown condition the behavior of
the material is elastic. When the shakedown condition is exceeded then steady state
ratcheting occurs. The contours of constant ratcheting rates are found to be parallel to the
surface defining the shakedown surface. VComputational studies based on the assumption
that the matrix is eléstic-perfcctly plastic also predicts shakedown behavior but the shape of
the predicted shakedown surface is slightly convex while the experimentalresultsfall on a
straight line. However the computational predictions and experimental results are
sufficiently close to confirm that the shakedown concept is valid. It is observed

experimentally that the ratchet strain rate has the form

dep
—P_r 3
N B) (3)
where
(o)
_ AT +—L_ 4)
ATS o,

is proportional to the distance outside the shakedown surface and f(JB) is defined in Fig. 10.
AT, and o are the intersections defining the shakedown relationship, Fig. 8. The
simplified analysis performed in the Appendix for the Tresca yield condition gives similar
results and supports the possibility that equation (3) is valid. However, the computer

calculations predict a more complex structure of the expression for the ratcheting rate with

the form

de
_Pp_S¢
N o, ® &)

where f(B) is equal to the thermal strain outside the shakedown condition and is then
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proportional to the distance outside the shakedown surface, Fig. 17, in the temperature
direction. This is consistent with the model in the Appendix for the v. Mises yield
condition.

The calculations and general results for shakedown conditions, cf. Ponter and Cocks
[1982], indicate that the shakedown condition should intercept the stress axis at the limit
stress. However, the cxpcrimcntral- values intercept at a slightly lower stress (170 MPa)
compared to the measured limit stress of 200 MPa. This discrepancy may be caused by the
simple constitutive equations used in the calcualtions. The experiments intercept the
temperature axis at 130°C and the calculations predict 110°C. This is close in view of the
uncertanty of CTE's of fiber and matrix and yield stress.

An upper bound on the rachet strain per cycle has been determined by Ponter and
Cocks [1982]. The upper bound applies for loading conditions which just exceed the

shakedown condition. The upper bound is given by

Aep
-A—N-24AEC+AET ) (6)

where the increment of elastic strain is given as
Ae, = —L (M

where A0, is the stress increment between the current state and the shakedown condition

(Fig. 17) and E is the modulus in the transverse direction. The thermal strain is given as
AeT = Ao« AT (8)
where A is the difference in coefficient of thermal expansion between fiber and matrix and

AT is the temperature increment between the current state and the shakedown condition.

The experiments, Fig. 9, shows a ratcheting rate that is lower than the upper bound (6).

11



However, the incremental change in ratcheting rate for operating conditions for outside the
shakedown condition follows the upper bound.

The failure strain can differ by over an order of magnitude depending on the operating
condition. This behavior which is illustrated in Fig. 11 has been observed previously by
Cottrell [1964]. It is known for Al-Li [Pilling and Rindly, 1986] that ductile failure is the
result of void nucleation and growth from small particles. In the studies of Hancock and
Mackenzie [1976] it is suggested that when failure is the result of void nucleation and

growth that the effective strain € at failure for multiaxial state of stress has the form
10
g; = 1.65%€ exp {—-2——5“5} | )

where €g is the uniaxial failure strain, oy is the sum of the principal stresses and G the
effective stress. The failure strain for this matrix in uniaxial tension is reported to be
approximately 0.3 [Sakui and Tamura, 1969]-and Jansson [1990] has reported in tests on
the composite under consideration that the strain for in-plane shear parallel to the fibers is

0.2. From the computer studies it has been determined that transverse loading alone intro-

- .
duces a multiaxial stress state for which —-_Lli = 6.0 over a large region of the matrix at
c

fracture. This is not greatly different from the values present in the classical Prandtl punch
problem. For a history dependent stress state the damage equation of Eq. (9) is equivalent

to

Ef ckk -
I exXp ?6__— de = 1,6580 (10)
0

Applying the formula (10) for the failure strain and using the data in Figs. 19 and 20

gives the failure strain for transverse loading

8{1 =0.9%

12



which compares quite well with the observed failure strain of 0.8% in the transverse
direction. Applying (10) for the therr_nomechanical loading histories gives the prediéted
failure strain is shown in Fig. 11. The observed failure strain is higher than the predicted
by the model for low transverse stress. However, the model gives the right trend but
clearly requires modification.

In the model it is assumed that catastrophic failure coincides with the condition when
10cai failure occurs. This gives an accurate prediction when the transverse load is close to
the limit load when a sﬁ]all defect is sufficient to trigger the failure.

In the case of low transverse loading the loss of load carrying capacity occurs ina
small volume of matrix material and may not be sufficient to cause global fractpre. The
damage has to be extended over a larger volume éﬁd the calculations give the strain for the
first matrix failure and not the strain for which the damage causes global instability. This
explanation can explain the observed difference in failure strains for low and high
transverse loading. The analysis required to illustrate this failure mechanism would require
calculations which follow the growth of damage throughout the matrix and it has not yet

been attempted.

CONCLUSIONS

When the metal matrix composite was subjected to a constant transverse stress and
cyclic temperature it is found that after an initial transient response the material reaches a
steady state condition.

For lvoadir‘lg conditions which fall within a shakedown condition the increment of
strain over a cycle is zero. However, if the shakedown condition is exceeded there is an
increment of irreversible strain after each cycle of temperature. The shakedown condition

is defined by the relation

13



where o = 1.30y and ATy is defined by

EmAaATS _

C
y

Predictions of finite element computations agree reasonable well with the experimental
observations of the shakedown surface. The differences exist presumably because of the

deficiencies in the constitutive equations of the matrix which in the calculations are assumed

to be of a very sunple form.

The increment of strain per cycle is also found to be a function of the function wh1ch

defines the shakedown surface so that
-2
=exp(9.5-10 “B) -1

where B is defined as

B =gloT, AT)

The transverse failure strain varies substantially with operating condition. The failure
strain is 0.08% when transverse stress is the only loading, and it increases to 12% when

the transverse stress is 30 MPa and the thermal loading is sufficiently high to cause

ratcheting.
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Appendix: Determination of Shakedown Surface and het in

A simple calculation has been performed which provides physical insight and some
limited quantitative information.

The composite consists of an elastic perfectly plastic metal matrix with modulus Ep,
yield stress 6y. A Tresca yield condition is assumed. The fiber with modulus Eg is
assumed to remain elastic. Itis also assumed that the stresses are constant in the matrix and
the fiber. This is an approximation which satisfies equilibrium and consequently shall tend
to give lower bounds on stiffness, limit load and shakedown conditions.

Since the fiber modulus Eg is five times higher than the matrix modulus Ep the elastic

matrix response is readily calculated using the condition
V_©O
ey= -1+ AcAT =0 (Al)

where 61 is the stress corresponding to the transverse loading and 03 is the stress in the

fiber direction acting on the matrix. Hence

Gy = -E onzAT1 +V .0, (A2)
Using the Tresca Yield Condition plastic yielding occurs when

q3 - 01 =-Oy (A3)
and eliminating 03 gives

01 (1 - vy) = 0y - EAGAT, (Ad)

Plastic deformation occurs if temperature is increased by a further amount AT,. Since Ag3

= () then

16



Aek +AaAT, =0 (AS)

and from the normality rule Ag3 = —Aef the plastic strain ef is given by
Aef = AAT, (A6)

Now when the temperature is decreased by an amount ATs;, elastic unloading takes place

until the yield condition 63 -3 = Oy is reached. Since g3 =0 then

Oy = —cy +0,+ EoncAT3 = oy (AD
from which the shakedown condition
EA0AT; < 20'ny'1 (A8)

can be deduced.
If the shakedown condition is exceeded by applying an additional temperature
decrease AT, then plastic increments of deformation occur
Aek = AaAT, (A9)
and normality gives

Ael = -Aeb (A10)

In continued cycling no incremental accumulation of strain can occur in the third direction

because the fiber is elastic. For steady state conditions is

ATy =~ ATy . (All)

17



Let the total temperature difference be AT for steady state conditions. Hence,

AT = ATy + AT; (Al12)

where ATj is the value for shakedown. The expression for the ratchet strain increment in

the 1 direction is then

1
Ae E c
-—g— = —MAQAT +—L -2 (A13)
(Gy/ m) Oy g,

This increment can also be expressed in terms of the shakedown condition. Defining the

function g by

EnAcAT + o

g1(AT,op = (A14)
Cy Oy
gives the condition for shakedown
g1(AT,61) <0 (A15)

The ratchet increment of strain when the shakedown condition is exceeded is given by
1_ Sy
Ag, = —=g(AT,09) (A16)
Em

The same model for a v. Mises yield condition gives the shakedown boundary

7
g)(AT,op = EmB%AT _ 14 _4 %1 (A17)
Oy Oy



with the ratchet increment of strain

(o)
Ae{’=% L g)(AT.0) (A18)
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Table 1. Material Constant Used in Computations

E (GPa] . \Y o [1/C] Oy [MPa]
Fiber 345 026 . 86410
Matrix 70 - 0.32 24+ 10 95
Cf = 55%:
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(b} Location of induction heater and MTS extensometer.

Figure 1.—Schematic of experimental setup.
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Figure 2.—Temperature distribution in specimen.
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Figure 3 —Hysteresis loop.
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Figure 11.—Fracture strain.
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ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

(a) A low magnification view showing that the fracture is
(a) A low magnification view showing the distributed localized to one plane.
cracking in the sample.

.

-
(b) A close-up indicating initial fracture close to fiber {(b) A close-up showing a ductile fracture in the matrix
matrix interface. with no traces of fiber on the fracture surface.
Figure 12.—Typical fracture surface for low transverse Figure 13.—Typical fracture surface for high fransverse loading.
loading.



(a) Hexagonal array with unit cell indicated.

(b} Finite element mesh.

Figure 14.—Identical perodic microstructure.
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Figure 15.—Calculated strain accumulation for low
fransverse loading.
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Figure 16.—Calculated strain accumulation for high
transverse loading.
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region for a temperature independent and exponentially
temperature dependent yield stress.
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Figure 18 —Calculated steady state strain accumulation as
a function of strain range and transverse loading.
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Figure 19.—Calculated maximum void growth factor in the
matrix for different loadings.

30



Tension

L)
~
XX
‘x-
e}
1_IIlIlllLJljlllllllIllllllllllllllllllllllllllllll
0.0 0.2 0.4 0.6 0.8 1.0
e (%)
Figure 20.—Highest void growth factor in each cycle as a
function of transverse strain.
8-
Tension
E wwwik g /0 = 0.11 AT = 200 C
- GEesg 0.h4 200
s [ 09000 0.81 200
—~ r
R [
S—r’ [
4_
a N
lw 5
2t
O N TS UENSEEN IS SUNE ENE USSR N SN AN TU NS T
0.0 0.2 0.4 0.6 0.8 1.0

e (%)

Figure 21.—Relation between effective strain at the location
of the highest void growth factor and transverse strain.
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